Graphing Linear Functions GCSE With Some Easy Examples

Understanding Linear Functions

What Are Linear Functions?

Linear functions are a fundamental part of algebra that describe relationships between two variables. These relationships are called linear because, when graphed, they form a straight line. In essence, linear functions showcase how one quantity changes concerning another.

Key Components of a Linear Function

Before we dive into graphing linear functions, it's essential to understand their key components:

1. Linear Equation

A linear equation is the foundation of a linear function. It is typically written in the form y = mx + b, where y represents the dependent variable, x is the independent variable, m is the slope, and b is the y-intercept.

2. Slope (m)

The slope of a linear function represents the rate at which the dependent variable changes concerning the independent variable. It determines the steepness of the line on the graph.

3. Y-Intercept (b)

The y-intercept is the point where the graph of a linear function intersects the y-axis. It signifies the initial value of the dependent variable when the independent variable is zero.

Graphing Linear Functions

Plotting Points

Before we can graph a linear function, we need to identify at least two points on the line. These points can be determined by substituting specific values of x into the linear equation and solving for y.

Finding the Slope

To find the slope of a linear function, we use the formula:

m = (y₂ - y₁) / (x₂ - x₁)

Where (x₁, y₁) and (x₂, y₂) are two points on the line.

Drawing the Line

With the slope and at least one point on the line, we can now graph the linear function. We start at the y-intercept and use the slope to find additional points, connecting them to create a straight line.

Examples

Let's illustrate these concepts with a couple of examples:

Example 1: Graphing y = 2x + 3

  1. Find two points. Let's use x = 0 and x = 2.

    • When x = 0, y = 2(0) + 3 = 3. So, the point (0, 3) is on the line.
    • When x = 2, y = 2(2) + 3 = 7. So, the point (2, 7) is also on the line.
  2. Find the slope:

    • m = (7 - 3) / (2 - 0) = 4 / 2 = 2
  3. Plot the points (0, 3) and (2, 7), then draw the line.

Example 2: Graphing y = -0.5x + 4

  1. Find two points. Let's use x = 1 and x = 3.

    • When x = 1, y = -0.5(1) + 4 = 3.5. So, the point (1, 3.5) is on the line.
    • When x = 3, y = -0.5(3) + 4 = 2.5. So, the point (3, 2.5) is also on the line.
  2. Find the slope:

    • m = (2.5 - 3.5) / (3 - 1) = -1 / 2
  3. Plot the points (1, 3.5) and (3, 2.5), then draw the line.

If you want more information or need further assistance with GCSE maths, you can get in touch for private maths lessons.

Did you like this article? Share it now
Rajan Kumar
Maths tutor in City of London specalised in offering online lessons classes adapted to the needs of each student. My classes are designed to help you reach your goals.Contact
Contact
Use our Smart Finder